
Abstract. The Christoffel–Darboux formula for classical
orthogonal polynomials is generalized to arbitrary sets
of orthogonal functions in three dimensions, yielding an
explicit link between frontier Kohn–Sham molecular
orbitals and the Kohn–Sham density matrix. Methods
using this result could significantly accelerate Kohn–
Sham density functional theory calculations, as only a
subset of the Kohn–Sham equations would need to be
addressed. The result can also be seen as an explicit
justification for the utility of frontier molecular orbital
theory.
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1 Motivation

Owing to its favorable cost per unit accuracy, density
functional theory (DFT) is increasingly recognized as the
method of choice for quantum chemistry calculations on
large molecular systems [1, 2, 3, 4]. Most of the current
research in DFT concentrates on improving these com-
putational characteristics, either by increasing the accu-
racy of existing functionals (without incurring large
computational penalties) or by decreasing the computa-
tional costs of extant DFT (without sacrificing accuracy).

This paper will explore an alternative method for
accelerating Kohn–Sham calculations and so ‘‘linear
scaling’’ methods, which are the typical approach to
decreasing the computational costs of DFT calculations,
bear mention [5, 6, 7, 8, 9, 10, 11, 12].

The defining feature of linear-scaling techniques is
that the computational cost of such calculations grows

only linearly with system size. (Especially in ordered
solids, however, one often exceeds this standard by
a logarithmic factor.) To achieve linear scaling,
one must avoid solving the Kohn–Sham system of
equations [13],

�r
2
þ tKS

r q; r½ �
� �

wir rð Þ � eirwir rð Þ
� �Nr

i¼1
; r ¼ a; b ;

ð1Þ

where, in the usual notation, wir rð Þf gNr
i¼1 is the set of

Kohn–Sham r-spin orbitals, eirf gNr
i¼1 are their associated

eigenvalues, the electron density is defined by

q rð Þ� qa rð Þ þ qb rð Þ

�
XNa

i¼1
wia rð Þj j2 þ

XNb

i¼1
wib rð Þ
�� ��2 ;

ð2Þ

and

tKS
r q; r½ � � t rð Þ þ tJ q; r½ � þ txc;r qa; qb; r

� �
ð3Þ

is the Kohn–Sham potential. In Eq. (3), t(r) is the
external potential of the system of interest,

tJ q; r½ � �
R q rð Þ

r�r0j j dr0 is the Coulomb potential, and

txc;r qa; qb; r
� �

� dExc qa;qb½ �
dqr rð Þ is the r-spin exchange–corre-

lation potential. In a straightforward implementation,
solving the Kohn–Sham equations involves diagonaliz-
ing large matrices, incurring a computational cost of
O(m3), where m is the number of one-electron basis
functions or, in a fully numerical approach [14], the
number of grid points. Linear-scaling techniques reduce
this cost either by introducing cutoffs, either in the
matrix elements of the Hamiltonian operator (divide-
and-conquer technique) [7, 12] or in the elements of the
first-order density matrix [5, 8]. In both techniques, the
Kohn–Sham orbitals are never explicitly constructed.
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The method explored in this paper represents a new
approach to the ‘‘density matrix family’’ of techniques,
wherein the key problem becomes minimizing the Kohn–
Sham energy as a functional of the density matrix,

E cKS½ � � Tr hKScKS
� �

; ð4Þ

where

cKS r;r0ð Þ � cKS
aa r;r0ð ÞþcKS

bb r;r0ð Þ

�
XNa

i¼1
w�ia r0ð Þ aj i ah jwia rð Þþ

XNb

i¼1
w�ib r0ð Þ bj i bh jwib rð Þ

ð5Þ

and

ĥhKS � �r
2
i

2
þ aj itKS

a rið Þ ah j þ bj itKS
b rið Þ bh j : ð6Þ

The difficulty arises because the minimization of the
Kohn–Sham energy is subject to some constraints, most
crucially those on the number of electrons

Na �
Z

cKS
aa r; rð Þdr;

Nb �
Z

cKS
bb r; rð Þdr

ð7Þ

and the idempotency constraints

cKS
aa r; r0ð Þ �

Z
cKS
aa r; xð ÞcKS

aa x; r0ð Þdx;

cKS
bb r; r0ð Þ �

Z
cKS
bb r; xð ÞcKS

bb x; r0ð Þdx :

ð8Þ

The idempotency constraint is particularly problem-
atic, and it is often enforced using some sort of ‘‘penalty
function.’’ It is more efficient, however, to write the
density matrices as a product of a symmetric matrix and
its generalized inverse [5]

cKS
rr r; r0ð Þ �

Z
b�rr r; xð Þbrr x; r0ð Þdx ð9Þ

and then minimize the analogue of Eq. (4),

E cKS½ � � Tr HKSb�b
� �

; ð10Þ

with respect to b(x, r), using a chemical potential to
force the constraints of Eq. (7). From Eq. (10) many
different computational approaches can be constructed,
including the nonorthogonal localized orbital methods
proposed by Yang [5].

Note that in the previous procedure, we never used
the fact that the Kohn–Sham orbitals are orthonormal
eigenvectors of a common effective potential. One
anticipates, then, that employing this highly specific

information about the relationship between the Kohn–
Sham orbitals to construct the Kohn–Sham density
matrix would allow one to obtain a new procedure with
greater computational efficiency. This is the primary
motivation for the present work.

The justification for seeking an improved linear-scaling
technique is if the method so developed has the potential
to supercede many of the problems with existing tech-
niques. The most important problem with existing linear-
scaling techniques is their extreme inefficiency for small
systems. This is easily understood for a technique like that
sketched earlier: for small systems, we have merely
replaced a single O(m3) operation (diagonalization of the
Kohn–Sham Hamiltonian matrix) with numerous other
O(m3) operations—the matrix multiplications in Eq. (9)
and the construction of the generalized inverse are
performed repeatedly during the iterative minimization
of Eq. (4). Consequently, linear-scaling techniques are
typically more costly than the more simple ‘‘direct diag-
onalization’’ approach for systems less than 10 Å across.

Another drawback to typical linear-scaling Kohn–
Sham DFT approaches is that the Kohn–Sham molec-
ular orbitals are never constructed. The Kohn–Sham
molecular orbitals, and especially the frontier molecular
orbitals, contain chemically useful information about
the reactivity of the molecule being studied, and it is
desirable to study them when performing calculations,
both for the chemical insight they provide and because
an unreasonable set of Kohn–Sham orbitals and orbital
eigenvalues is the most transparent indicator of a cal-
culation that has gone awry. Unfortunately, in a typical
linear-scaling Kohn–Sham DFT approach, these orbi-
tals are rarely accessed until after the calculation is
completed, and then finding the highest occupied orbi-
tals and lowest unoccupied orbitals requires partial
diagonalization of the Kohn–Sham Hamiltonian (or
density matrix). Among other drawbacks, this hinders
one in identifying and stopping errant calculations early
in the computational process.

An ideal Kohn–Sham DFT technique, then, would be
competitive with simple diagonalization for small sys-
tems, competitive with linear-scaling techniques for large
systems, and would provide access to approximate
frontier molecular orbitals throughout the course of the
calculation. The present paper represents a first attempt
to explore methods that might meet these criteria.

2 Theoretical background

The genesis of this study is the Christoffel–Darboux
formula for orthogonal polynomials [15],

Xn

i¼0
qi xð Þqi x0ð Þ � an

qn x0ð Þqnþ1 xð Þ � qn xð Þqnþ1 x0ð Þ
x� x0ð Þ ;

ð11Þ

where, because the qn xð Þf g1n¼0 are a set of polynomials
orthonormal to a nonnegative weight function,
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Z
qi xð Þqj xð Þx xð Þdx � dij ; ð12Þ

they satisfy a three-term recursion relation:

anqnþ1 xð Þ ¼ x� bnð Þqn xð Þ � an�1qn�1 xð Þ: ð13Þ

Favard’s theorem dictates that an>0 for all n [15].
That the Christoffel–Darboux formula might be

useful for quantum chemistry was first recognized by
Dawson and March [16]: note that if the orthogonal
polynomials were Kohn–Sham spin orbitals, then
Eq. (11) expresses the Kohn–Sham density matrix for
this spin in terms of the highest occupied and the lowest
unoccupied Kohn–Sham orbitals. Two major obstacles
remain. The first is that, excepting the case of spherical
symmetry, we are rarely concerned with Kohn–Sham
orbitals that depend upon only one spatial variable. The
second obstacle is that, even in one dimension, the ei-
genfunctions of the one-dimensional Schrödinger equa-
tion,

� 1

2

d2

dx2
þ tKS xð Þ

� �
wi xð Þ ¼ eiwi xð Þ ; ð14Þ

only satisfy a three-term recurrence relation (Eq. 13) for
very special choices of the Kohn–Sham potential, tKS (x).

Exploiting the Christoffel–Darboux formula in
Kohn–Sham DFT, then, requires generalizing the three-
term recurrence relation to three dimensions in such a
way that

1. The three-dimensional three-term recurrence relation
will yield a generalized Christoffel–Darboux formula.

2. Kohn–Sham potentials have orbitals satisfying this
generalized recurrence relation.

These obstacles are surmounted in Sects. 3 and 4,
respectively. To motivate these results, however, we
prove that the frontier Kohn–Sham molecular orbitals
provide sufficient information to determine not only the
Kohn–Sham density matrix, but every property of an
electronic system.

Theorem 1. Suppose the highest occupied orbitals of
each spin are known for the system. In addition, the
lowest unoccupied orbitals, including any orbitals with
lower orbital energies than the highest occupied orbitals,
are known for each spin channel. Together, these orbi-
tals determine every property of the system.

Proof: Take one orbital of each spin. We can deter-
mine the Kohn–Sham potential for these systems by
inverting the Kohn–Sham equations,

tKS
a rð Þ �

r2

2 þ ej;a

� 	
wj;a rð Þ

wj;a rð Þ :

tKS
b rð Þ �

r2

2 þ ej;b

� 	
wj;b rð Þ

wj;b rð Þ ;

ð15Þ

(Where Eq. (15) gives an indeterminate form (as the
nodal surfaces of orbitals), the potential may be evalu-
ated using L’Hôpital’s rule.) Solving the Kohn–Sham
equations for these potentials, we can construct the
electron density,

q rð Þ �
X1
i¼1

gia wia rð Þj j2 þ
X1
i¼1

gib wib rð Þ
�� ��2 ; ð16Þ

if we know which orbitals are occupied and which
orbitals are unoccupied. Knowing the highest occupied
orbitals allows us to determine the upper limit of the
summation in Eq. (16). When there are no holes below
the Fermi level – that is, when the system is Kohn–
Sham t-representable – the information from the
lowest unoccupied orbitals is redundant. When there
are holes below the Fermi level, knowing the lower
unoccupied orbitals tells us which orbitals they are
[17].

It must be noted that this theorem has been cir-
culating orally, if not in print, for many years. It also
should be noted that it is not true (though it is often
stated) that a single Kohn–Sham orbital determines all
the properties of a system. In the spin-free case, even
knowing the highest occupied orbital is not enough.
To see this, consider that the highest occupied
molecular orbital for the helium atom is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qHe rð Þ

p
.

However, knowing that this is the highest occupied
molecular orbital does not distinguish between the
helium atom and another pure-state t-representable
system, namely the one-electron system with electron
density 1

2qHe rð Þ. Consistent with the spin-restricted
analogue of the previous theorem, however, the lowest
unoccupied Kohn–Sham orbitals for these two systems
differ. In the spin-unrestricted case, there are two
highest occupied molecular orbitals for the helium
atom but only one for the system with electron density
1
2qHe rð Þ.

Theorem 1 indicates that, in principle, knowledge of
the frontier molecular orbitals is sufficient to determine
the density matrix. However, the construction in the
proof of theorem 1 constructs the density matrix from
the Kohn–Sham orbitals by returning to the original
Kohn–Sham problem (which could be solved either by
straight diagonalization or with linear-scaling tech-
niques). Progress, then, depends on forming the Kohn–
Sham density matrix as an explicit functional of the
frontier Kohn–Sham orbitals.

3 The matrix-vector three-term recurrence relation

We restrict ourselves to the Kohn–Sham equation for
a-spin electrons, the case for b-spin electrons being
identical. The following discussion is limited to three
dimensions, but the extension to other dimensions is
straightforward. In three dimensions, we can write any
analytic function as a power series in
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f rð Þ ¼
X1
kj j¼0

akrk ; ð17Þ

where kT ” [k1, k2, k3], rk ¼ rk1
1 rk2

2 rk3
3 , |k|= k1+ k2+ k3,

and k1, k2, and k3 are nonzero integers. Nonanalytic
functions may be approximated arbitrarily closely using
functions of the form of Eq. (17); moreover, the exten-
sion of these results to multidimensional Laurent series
[18] is also straightforward. A three-dimensional poly-
nomial is said to have degree d if it can be written in the
general form

Pd rð Þ �
Xd

kj j¼0
akrk: ð18Þ

Problems arise when one seeks to extend classical
results like the Christoffel–Darboux formula to higher
dimensions because, for d >0, there are generally many
different ways to choose k1, k2, and k3 so that |k|= k1+
k2+ k3. To state this more mathematically: the number
of linearly independent three-dimensional polynomials
with degree d is

r3d ¼
d þ 2

d

� �
; ð19Þ

which differs form the one-dimensional result r1d ¼ 1
� �

.
However, many analogues to one-dimensional results
can be obtained if, instead of treating individual
orthogonal polynomials, one treats vectors of orthogo-
nal polynomials with a given degree [19, 20, 21, 22, 23].
That is, for each degree, d, define r3d -dimensional vector
functions that are orthonormal with respect to the
weight function x(r),

PT
d � P 1

d rð Þ; P 2
d rð Þ; . . . P

r3d
d rð Þ

h i
: ð20Þ

The orthonormality constraint may be compactly
expressed as

Z
PT

d rð Þ � Pd rð Þx rð Þdr ¼ I ; ð21Þ

where · denotes the outer product,

PT
d rð Þ � Pd rð Þ �

P 1
d rð ÞP 1

d rð Þ P 2
d rð ÞP 2

d rð Þ � � � P 1
d rð ÞP r3d

d rð Þ

P 2
d rð ÞP 1

d rð Þ P 2
d rð ÞP 2

d rð Þ p2d rð ÞP r3d
d rð Þ

..

. ..
. . .

. ..
.

P
r3d
d rð ÞP 1

d rð Þ P 2
d rð ÞP r3d

d rð Þ � � � P
r3d
d rð ÞP r3d

d rð Þ

2
66666664

3
77777775
;

ð22Þ

and I is the r3d � r3d identity matrix. Polynomials with
different degrees are orthogonal in an set of orthogonal
polynomials, so

Z
PT

d 0 rð Þ � Pd rð Þx rð Þdr ¼ 0 d 6¼ d 0; ð23Þ

where 0 is a r3d 0 � r3d matrix of zeros [20].
To derive the Christoffel–Darboux formula requires

an analogue to the recursion relation for one-dimen-
sional orthogonal polynomials. A natural extension is
[20]

riPn rð Þ ¼ Ai
nPnþ1 rð Þ þ Bi

nPn rð Þ þ Ai
n�1

� �T
Pn�1 rð Þ; ð24Þ

with P�1 rð Þ ¼ Ai
�1 ¼ 0:

From the dimension of the vectors, Pn rð Þf g1n¼0 we
discern that Ai

n is a r3n � r3nþ1 matrix and Bi
n is a r3n � r3n

matrix. We call Eq. (24) the matrix-vector recurrence
relation.

The matrix-vector recurrence relation is a funda-
mental mathematical result, motivated by the fact that
for any set of polynomials generated by the form
(Eq. 24) (subject to a rank condition on the matrices

Ai
d


 �3
iþ1 and the choice P0(r)=1, there will always exist

some x(r) for which Eqs. (21) and (23) are satisfied. In
the one-dimensional case, the preceding result becomes
Favard’s theorem, and the three-term recursion relation
assumes its classical form [19, 20].

With this background we can derive an analogue to
the Christoffel–Darboux theorem, namely [20]

Xn

i¼0
Pi rð Þ � Pi r0ð Þ ¼

Xn

i¼0

Xr3n

j¼1
P j

i rð ÞP j
i r0ð Þ

¼ Pn r0ð Þ � Ai
nPnþ1 rð Þ � Pn rð Þ � Ai

nPnþ1 r0ð Þ
ri � r0i

ð25Þ

Equation (25) and, more generally, the matrix-vector
ansatz for multidimensional orthogonal polymials, was
first derived by Xu [20].

Proof of Eq. (25): We proceed by induction. For n
=0, we have

P0 r0ð Þ � Ai
0P1 rð Þ � P0 rð Þ � Ai

0P1 r0ð Þ
ri � r0i

¼
P0 r0ð Þ riP0 rð Þ � Bi

0P0 rð Þ
� �

� P0 rð Þ r0iP0 r0ð Þ � Bi
0P0 r0ð Þ

� �
ri � r0i

¼
ri � r0i
� �

P0 r0ð ÞP0 rð Þ
ri � r0i

þ P0 r0ð Þ � Bi
0P0 rð Þ � P0 rð ÞBi

0P0 r0ð Þ
ri � r0i

¼ P0 r0ð ÞP0 rð Þ
ð26Þ

Now, suppose the Christoffel–Darboux formula
holds for some n. Then
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Xnþ1
i¼0

Pi rð Þ �Pi r0ð Þ

¼
Pnþ1 r0ð Þ �Ai

nþ1Pnþ2 rð Þ�Pnþ1 rð Þ �Ai
nþ1Pnþ2 r0ð Þ

ri� r0i

¼

Pnþ1 r0ð Þ � riPnþ1 rð Þ�Bi
nþ1Pnþ1 rð Þ� Ai

n

� �T
Pn rð Þ

h i

�Pnþ1 rð Þ � r0iPnþ1 r0ð Þ�Bi
nþ1Pnþ1 r0ð Þ� Ai

n

� �T
Pn r0ð Þ

h i
0
B@

1
CA

ri� r0i

¼ 1

ri� r0i

ri� r0i
� �

Pnþ1 rð ÞPnþ1 r0ð Þ
�Pnþ1 r0ð ÞBi

nþ1Pnþ1 rð ÞþPnþ1 rð ÞBi
nþ1Pnþ1 r0ð Þ

�Pnþ1 r0ð Þ Ai
n

� �T
Pn rð ÞþPnþ1 rð Þ Ai

n

� �T
Pn r0ð Þ

0
BB@

1
CCA

¼ Pnþ1 rð ÞPnþ1 r0ð ÞþPn r0ð ÞAi
nPnþ1 rð Þ�Pn rð ÞAi

nPnþ1 r0ð Þ
ri� r0i

þPnþ1 rð ÞBi
nþ1Pnþ1 r0ð Þ�Pnþ1 r0ð ÞBi

nþ1Pnþ1 rð Þ

¼ Pnþ1 rð ÞPnþ1 r0ð Þþ
Xn

i¼0
Pi rð Þ �Pi r0ð Þ: ð27Þ

The potential importance of the generalized Chris-
toffel–Darboux formula is clear: if one can find an effi-
cient way to construct the function Pn r0ð Þ � Ai

nPnþ1 rð Þ,
then we can also construct the density matrix. Moreover,
constructing Pn r0ð Þ � Ai

nPnþ1 rð Þ requires knowledge only
of the highest occupied and lowest unoccupied states,
along with the fundamental multidimensional recursion
relation. For orthogonal polynomials, the recurrence
matrices are simply computed from Pn (r) and Pn+1(r),
see Eq. (30).

One problem remains: the Kohn–Sham orbitals for
physical systems will rarely, if ever, be orthogonal
polynomials. As such, practical applications of the
Christoffel–Darboux formula require generalizing the
matrix-vector recurrence relation, Eq. (24), to include
the Kohn–Sham orbitals of relevant physical systems.
This is the topic of the next section.

4 Generalizing the recurrence relation

Motivated by the derivation (Eq. 27), we generalize the
matrix-vector recurrence relation to

x̂xi rð Þ ¼ Ai
nFnþ1 rð Þ þ Bi

nFn rð Þ þ Ai
n�1

� �T
Fn�1 rð Þ; ð28Þ

where F�1 rð Þ ¼ Ai
�1 ¼ 0, F0( r) and Bi

0 are arbitrary, and
x̂xi rð Þf g3i¼1 are operators that satisfy the following con-
straints:

1. The operator x̂xi rð Þ � x̂xi r0ð Þ has a left-inverse unless
r „ r¢.

2. x̂xi rð Þ kf rð Þ½ � ¼ kx̂xi rð Þf rð Þ, where k is a constant. While
x̂xi need not be a linear operator, theorem 2 will show
that it can be assumed to be.

3. Since the x̂xi rð Þf g3i¼1 operators need not commute
amongst themselves, we allow the number of rows
and columns in Ai

n and Bi
n to vary as long as their

dimensions remain consistent with the requirements
of Eq. (28). That is, while Ai

n is still an r3n � r3nþ1
matrix and Bi

n is still an r3n � r3n matrix, r3n need not be
given by Eq. (19). (The dimensions of the matrices
are not totally arbitrary however: the form of the
recursion implies that r3n � 3n.)

We refer to the x̂xi rð Þf g3i¼1 as recursion operators.
Retracing the proof of Eq. (25) with this new relation

reveals that the Christoffel–Darboux formula now holds
in the revised form:

Xn

i¼0
Fi rð Þ �Fi r0ð Þ ¼

Xn

i¼0

Xr3n

j¼1
F j

i rð ÞF j
i r0ð Þ¼

x̂xi rð Þ� x̂xi r0ð Þ½ ��1 Fn r0ð Þ �Ai
nFnþ1 rð Þ�Fn rð Þ �Ai

nFnþ1 r0ð Þ
� �

:

ð29Þ

Enumerating and rationalizing the generalizations in
Eq. (28) may be helpful.

1. The functions Fn rð Þ � F 1
n rð Þ; F 2

n rð Þ; . . . F r3n
n rð Þ

h iT
do

not have to be polynomials and F0(r) is arbitrary.
This choice significantly expands the robustness of
the recursion. For instance, because the three-
dimensional harmonic oscillator eigenfunctions can
be written in the form Fn (r)=r (r) Pn (r), where the
components of Pn(r) are products of the classical
Hermite polynomials and r(r) is the appropriate
Gaussian function, the three-dimensional harmonic
oscillator is now within the purview of the Christof-
fel–Darboux equation.

2. The recursion operators, x̂xi rð Þf g3i¼1, need not denote
multiplication by the Cartesian coordinates (x, y, z)
and are, in general, operators. The simplest case is
when the recursion operators simply multiply the
operand by a function of the Cartesian coordinates,

xi rð Þf g3i¼1. With this extension, the Christoffel–Dar-
boux formula encompasses Kohn–Sham equations
that can be changed into differential equations with
orthogonal polynomial eigenvectors by a coordinate
transformation. (The invertibility restriction ensures
that the coordinate transformation from r to

xi rð Þf g3i¼1 is invertible.)
3. Relaxing the dimensional requirement from Eq. (19)

is essential if the operators x̂xi rð Þf g3i¼1 do not com-
mute, since then the number of linearly independent
functions of a given ‘‘degree’’ in these operators will
exceed the prediction of Eq. (19). In addition, in
systems with high symmetry the ‘‘natural ordering’’
of states sometimes seems to favor a higher level of
‘‘pseudodegeneracy’’ than that predicted by Eq. (19).
(For example, Eq. 19 is inconsistent with grouping
the orbitals of atomic systems by their principle
quantum numbers.)
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Allowing the x̂xi rð Þf g3i¼1 to be operators significantly
extends the purview of the recurrence relation. Some
insight is gained by exploring the links between the
recursion operators and the recursion matrices. First,
multiplying Eq. (28) by F T

nþ1 rð Þ and integrating we
obtain

Ai
n ¼

Z
F T

nþ1 rð Þ � x̂xi rð ÞFn rð Þdr; ð30Þ

where we have used analogues of Eqs. (21) and (23).
Similar multiplication by F T

n rð Þ gives

Bi
n ¼

Z
F T

n rð Þ � x̂xi rð ÞFn rð Þdr: ð31Þ

These results might have been deduced directly from
similar expressions for the recursion coefficients of
orthogonal polynomials [20, 24].

Equation (30) is an especially important result. If we
know Fn(r), Fn+1(r), and one of the recursion operators,
x̂xi rð Þ, then we can use Eq. (30) to evaluate the Ai

n, and
thereby evaluate the Christoffel–Darboux equation
(Eq. 29). Equation (30) also indicates that it is reason-
able to assume that the matrices Ai

n usually achieve the
maximum possible rank of r3n. From Eq. (30), this implies
that for every r3n-component vector c,

Z
F j

nþ1 rð Þ
Xr3n

i¼1
cix̂xi rð ÞF i

n rð Þdr 6¼ 0 ð32Þ

for at least one value of j. Equation (32) could only be
violated if the elements of Fn+1(r) do not form a com-
plete basis set for the space of all functions in which the
x̂xif g3i¼1 are applied, in some combination, at least n +1
times but no more. [That is, the ‘‘degree’’ of Fn+1 (r) is
n+1. If this assumption is not true, one can envision
using the flexibility provided in generalization 3 to in-
crease r3nþ1 until full rank is attained.] Given that the
rank Ai

n is r3n, one can obtain a generalized inverse, an
r3nþ1 � r3n matrix Ai

n

� ��
satisfying

X3
i¼1

Ai
n

� ��
Ai

n ¼ I : ð33Þ

Using this inverse, we may rewrite the recursion
relation in the form [20]

Fnþ1 rð Þ ¼
X3
i¼1

Ai
n

� ��
x̂xi rð ÞFn rð Þ � Ci

nFn rð Þ � Di
nFn�1 rð Þ:

ð34Þ

It is also helpful to note that the x̂xi rð Þ are a sort of
ladder operator [25]. This follows directly from the
‘‘contamination relation’’,

Ai
nFnþ1 rð Þ þ Bi

nFn rð Þ þ Ai
n�1

� �T
Fn�1 rð Þ � x̂xi rð ÞFn rð Þ;

ð35Þ

which shows that the effect of operation by x̂xi rð Þ is to
‘‘contaminate’’ states of degree n with their ‘‘raised’’
(degree n +1) and ‘‘lowered’’ (degree n )1) counter-
parts. It is particularly instructive that when the x̂xif g3i¼1
are linear, mutually commuting, operators, the eigen-
functions all have the form

F l
n rð Þ ¼

Xn

kj j¼0
al

k � x̂x
k1
1 rð Þx̂xk2

2 rð Þx̂xk3
3 rð Þ: ð36Þ

The x̂xif g3i¼1 generalize the form of the conventional
‘‘raising’’ ladder operator, where al

k ¼ 0 for all | k |< d.
It is useful to establish a link between the recursion

operators and the Hamiltonian. For simplicity, we start
with the one-dimensional case. Applying the Kohn–
Sham Hamiltonian, ĥh xð Þ, to both sides of the generalized
form of Eq. (13),

anwnþ1 xð Þ ¼ q̂q xð Þ � bn½ �wn xð Þ � an�1wn�1 xð Þ ð37Þ

and using the eigenvalue condition

ĥhwn xð Þ ¼ enwn xð Þ ð38Þ

we obtain

anenþ1wnþ1 xð Þ ¼ ĥhq̂q� bnen

� 	
wn xð Þ � an�1en�1wn�1 xð Þ:

ð39Þ

Subtracting en+1 times Eq. (37) yields the identity

ĥh� enþ1

� 	
q̂q xð Þwn xð Þ ¼ en � enþ1ð Þbnwn xð Þ

þ an�1 en�1 � enþ1ð Þwn�1 xð Þ:
ð40Þ

Equation (40) is a sort of ‘‘lowering’’ contamination
relation: when ĥhq̂q operates on an eigenfunction of ĥh,
wn xð Þ, it tends to mix wn xð Þ with the eigenfunction of
next-lowest order.

Similar relations are obtained in higher dimensions.
Applying the Kohn–Sham Hamiltonian operator to
each side of Eq. (28) gives

ĥhx̂xi rð ÞFn rð Þ ¼ Ai
nEnþ1Fnþ1 rð Þ þ Bi

nEnFn rð Þ

þ Ai
n�1

� �T
En�1Fn�1 rð Þ;

ð41Þ

where En is the r3n � r3n diagonal matrix whose diagonal
elements are the Kohn–Sham energy eigenvalues,
ĥhF i

n�1 rð Þ ¼ Enð ÞiiF i
n�1 rð Þ and Ai

n and Bi
n depend on the

recursion operators through Eqs. (30) and (31). A sim-
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pler form, more closely analogous to Eq. (40), is
obtained if we apply ĥh to both sides of Eq. (34). Then

Enþ1Fnþ1 rð Þ ¼
X3
iþ1

Ai
n

� ��
ĥh rð Þx̂xi rð ÞFn rð Þ � Ci

nEnFn rð Þ

� Di
nEn�1Fn�1 rð Þ: ð42Þ

Multiplying both sides of Eq. (34) by En+1 and sub-
tracting from Eq. (42) gives a result analogous to
Eq. (40), namely

X3
i¼1

Ai
n

� ��
ĥh rð Þ � Enþ1 Ai

n

� ��h i
x̂xi rð ÞFn rð Þ

¼ Ci
nEn � Enþ1Ci

n

� �
Fn rð Þ

þ Di
nEn�1 � Enþ1Di

n

� �
Fn�1 rð Þ:

ð43Þ

Equations (40), (41) and (43) are equations for the
recursion operators, x̂xif g3i¼1, and solving these equations
for each n will give an appropriate solution. Matters are
complicated because solving Eq. (41) or (43) for one
specific value of n may not give the general solution. For
example, one solution to Eq. (40) is

q̂q xð Þ � bn þ an�1l̂l xð Þ ð44Þ

where l̂l xð Þ is the ‘‘lowering’’ ladder operator,

l̂l xð Þwk xð Þ ¼ wk�1 xð Þ: ð45Þ

This is the ‘‘trivial solution’’ – substitution of Eq. (44)
into Eq. (37) gives an =0.

5 Universality of the generalized recursion relation

It was demonstrated in Sect. 3 that the three-term
recursion relation has a natural generalization to higher
dimensions, namely, the matrix-vector recursion rela-
tion, Eq. (24). It was then shown in Sect. 4 how this
relation could be dramatically extended, Eq. (28), while
still maintaining the sought Christoffel–Darboux rela-
tion, Eq. (29). Does every set of Kohn–Sham orbitals
satisfy a recursion relation with the form of Eq. (28)?

Theorem 2: Let Fn rð Þf g1n¼0 be a set of orthonormal

functions, with dim Fn � r3n
� �

. There exist linear opera-
tors, x̂xi rð Þf g3i¼1, such that Fn rð Þf g1n¼0 satisfy a matrix-
vector recursion with the form of Eq. (28).

The proof is trivial. It is sufficient to show that, for
any choice of the recursion matrices, there exist opera-
tors x̂xi rð Þf g3i¼1 that satisfy the matrix-vector recursion
relation. Adopting the standard bra-ket notation, it is
evident from Eq. (28) that

x̂xi rð Þ ¼
X1
n¼0

Ai
nFnþ1 rð ÞþBi

nFn rð Þþ Ai
n�1

� �T
Fn�1 rð Þ

��� E
Fn rð Þh j:

ð46Þ

The component-by-component resolution of this
relationship is instructive:

x̂xi rð ÞF k
n rð Þ ¼

Xr3nþ1
l¼1

Ai
n

� �
klF

l
nþ1 rð Þ þ

Xr3n

l¼1
Bi

n

� �
klF

l
n rð Þ

þ
Xr3n�1
l¼1

Ai
n�1

� �
klF

l
n�1 rð Þ;

ð47Þ

where F l
n rð Þ denotes the lth component of Fn(r) and (D)kl

denotes the element in the kth row and lth column of
matrix D.

Theorem 2 is only a formal result, and similar results
are available for any reasonable recurrence relation. The
hope is that because the Fn rð Þf g1n¼0 are very special
functions – eigenfunctions of a second-order differential
operator grouped together in an obvious way – the
recursion operators can be accurately approximated with
a simple form. While the motivation for the generalized
matrix-vector recursion relation is the preservation of the
Christoffel–Darboux relation, clearly the recursion rela-
tion is conducive to a simple analytic form. For example,
the form of the recursion operators in Eq. (28) takes a
very simple form when the eigenfunctions are related to
orthogonal polynomials – as by coordinate transforma-
tion and multiplication by a weighting function – are
much simpler for than other recursions, for example, the
ladder operators [26, 27]. Generally speaking, the action
of a second-order differential operator is to ‘‘reduce the
degree’’ of a function by two orders, so the fact the ele-
ments of Fn rð Þf g1n¼0 satisfy a linear second-order partial
differential equation is also favorable.

From Eq. (46) for the recursion operators and
Eqs. (30) and (31) for the recurrence matrices, it is
apparent that there are generally many different recur-
sion operators that satisfy Eq. (46), and each choice of
recursion operators gives different recurrence matrices
through Eqs. (30) and (31). Conversely, for any given
set of orthogonal polynomials one can choose many
different recurrence matrices, the recursion operators
subsequently being defined by Eq. (46). Since it is
straightforward to determine the recurrence matrices
from the recursion operators, we should exploit this
freedom and choose recursion operators with simple
forms. In the remainder of the paper we shall assume

that recursion operators, x̂xi rð Þf g3i¼1, are chosen so that
they are as simple and ‘‘easily approximated’’ as possi-
ble, with the form of the recurrence matrices, Ai

n


 �3
i¼1

and Bi
n


 �3
i¼1, being subsequently determined by this

form through Eqs. (30) and (31).
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6 Proposed computational procedure

For completeness, we sketch how solutions to the
Kohn–Sham equations, or any other independent par-
ticle model with a local effective potential, could be
obtained from the preceding analysis.

1. Starting from an initial ‘‘guessed’’ electron density,
qa;b
0 rð Þ, construct the Kohn–Sham Hamiltonian,

Eq. (6).
2. From this Hamiltonian, find at least one of the

recursion operators, x̂xi rð Þ.
3. Solve for the a-spin eigenvalues, F a

na�1 rð Þ and F a
na

rð Þ,
where na is the smallest numbers such that

Z Xna

i¼0
F a

i rð Þ � F a
i rð Þ

" #
dr[Na: ð48Þ

In practice, it may be necessary to solve instead for
F a

na
rð Þ and F a

naþ1 rð Þ, since the energetic order of eigen-
functions may differ from the order in which they are
generated by the recursion relation. Use Eq. (30), find
the recurrence matrix, Ai

n. Owing to the form of Eq. (30),
the recursion matrices are expected to be sparse. In the
extreme case of a separable partial differential equation,
the recursion matrices, Ai

n, have exactly one nonzero
element in each row.

Equation (48) can be evaluated using the Christoffel–
Darboux formula. The technique for the b-spin electrons
is identical.

4. Using the criterion of lowest energy, construct the
density matrix by ‘‘subtracting off’’ the unoccupied
orbitals from the Christoffel–Darboux result. That is,
evaluate the a-spin density matrix (Eq. 49) and its
b-spin counterpart, and then construct the Kohn–
Sham density matrix from Eq. (5).

cKS
aa rð Þ �

Xna

i¼0
F a

i rð Þ � F a
i r0ð Þ �

X
unoccupied

F j;a
m rð ÞF j;a

m r0ð Þ

ð49Þ

5. From the trace of the density matrix components,
construct the spin densities, guess a new Kohn–Sham
Hamiltonian, and repeat steps 2–5 until convergence.

This algorithm would be immediately practicable
were it not for step 2. If we assume that step 2 can be
performed in an efficient fashion, all we must do is solve
for a select few of the Kohn–Sham eigenfunctions or, in
the spirit of linear scaling methods, perhaps work to
construct ‘‘directly’’ the numerator on the right-hand
side of the Christoffel–Darboux relation. In either case,
the algorithm would be competitive with existing tech-
niques.

Whether there is an efficient, accurate, and robust
way to construct approximations to the recursion

operators is a topic for further research. Several tools at
our disposal were presented in Sect. 4, perhaps the most
helpful of these are Eqs. (41) and (43), which link the
recursion operators to the structure of the Kohn–Sham
Hamiltonian. The matrix-vector form of the recurrence
relation chosen here is designed to exploit some under-
lying properties of the Kohn–Sham problem: the fact
that a second-order differential operator ‘‘reduces the
degree’’ of a function by 2 orders motivates the choice of
a two-level recursion relation, while the quasidegeneracy
structure of differential equations in higher dimensions
is captured in the ‘‘matrix-vector’’ form of the recursion
relation. For this reason, this recursion has an especially
simple form whenever the system can be mapped onto
an ‘‘classical’’ differential equation, and this presents one
way to proceed: attempt to find a transformation of
coordinates – probably quite nonlinear – under which
the partial differential equation of interest approximates
a system whose recursion coefficients are known. An-
other possibility is to assume a form for the recursive
operator, for example,

x̂xi rð Þ � a 0ð Þ
i rð Þ � þa 1ð Þ

i rð Þrb 1ð Þ
i rð Þ�

þ a 2ð Þ
i rð Þrb 2ð Þ

i rð Þrc 2ð Þ
i rð Þ � þ � � � ;

ð50Þ

solve for the coefficients using the first few orders of
Eq. (41) and hope the recursion operators are also valid
at higher orders.

To find a truly robust approach, however, will require
further study of the properties of the Kohn–Sham
Hamiltonian. It is known that the Kohn–Sham Hamil-
tonian is a sort of ‘‘generalized’’ Sturm–Liouville oper-
ator, satisfying theorems analogous to those of classical
Sturm–Liouville equations [28]. Indeed, Wintner’s
generalized nodal theorem [28] is one of the primary
motivations for the vector-matrix recursion structure
adopted here. The author hopes that by studying the
properties of the Kohn–Sham differential operator,
methods for approximately constructing the recursion
operators directly from the Kohn–Sham potential will
be obtained. If the methods for doing so are no more
costly than steps 3 and 4 in the previous algorithm, one
may anticipate an entirely new approach for solving the
Kohn–Sham equations, as well as other partial differ-
ential equations with similar form.

In passing, we note that the similarities of the present
proposal to pseudopotential techniques [29, 30, 31, 32,
33]. In both cases, only the ‘‘chemically relevant’’ va-
lence orbitals are constructed. However, in the present
proposal the effects of the ‘‘core’’ electrons are modeled
exactly through the Christoffel–Darboux relation. It will
be interesting to assess how closely the orbitals from
pseudopotentials satisfy Eq. (29), and it is interesting to
contemplate using the Christoffel–Darboux formula as
a constraint by which improved pseudopotentials might
be constructed.

Also in passing, we mention that the result of the
Christoffel–Darboux formula is nothing less than the
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‘‘resolution of the identity’’ in the basis set of the
occupied and lower unoccupied valence orbitals. Thus,
the Christoffel–Darboux formula has immediate com-
putational applications in ‘‘resolution of the identity’’
techniques for accelerating electronic structure calcula-
tions [34, 35, 36]. (For a basis set of orthogonal poly-
nomials, the benefit is immediate. For the more common
Gaussian basis sets, existing techniques may be more
efficient.)

7 Conclusion

The key result of this paper is the generalized ‘‘matrix
recurrence relation’’, Eq. (28) and the associated Chris-
toffel–Darboux formula, Eq. (29). Theorem 2 shows that
the present construction generalizesDawson andMarch’s
results for the orbitals of the one-dimensional harmonic
oscillator [16] to the orbitals of any system of noninter-
acting fermions. The Christoffel–Darboux formula is an
explicit method for determining the reactivity of a chem-
ical system from a few of the highest occupied and lowest
unoccupied Kohn–Sham molecular orbitals, and thus
provides a rigorousmathematical justification for frontier
molecular orbital theory. In addition, after one performs a
conventional Kohn–Sham DFT calculation, one may
evaluate the recursive operators and recursion matrices
using Eqs. (48) and (30), thereby obtaining an interesting
identity relating the valence Kohn–Sham orbitals to the
entire Kohn–Sham density matrix.

The primary goal of this line of research, however, is
to derive efficient, accurate, and robust computational
methods for generating the recursion operators from the
Kohn–Sham potential. The favorable properties of the
proposed recurrence relation – the freedom in choosing
the recurrence matrices, the two-level nature of the
recurrence, and the explicit accommodation of the nodal
structure and quasidegeneracy of eigenfunctions – lead
the author to hope that the recursion operators for the
Kohn–Sham orbitals will frequently be well approxi-
mated by a ‘‘simple’’ form.

If one knows the recursion operators and the solu-
tions to the Kohn–Sham equations for the elements of
the highest occupied and lowest unoccupied sets of
orbitals, then the Kohn–Sham density matrix (and hence
the kinetic energy and electron density) can be
constructed using the Christoffel–Darboux formula
(Eq. 29). Iterative improvement to the self-consistent
solution follows. If the computationally limiting step in
the computational procedure is not the construction of
the matrix recursion coefficients, such an approach
could be competitive with the best existing linear-scaling

algorithms for constructing the Kohn–Sham density
matrix for large systems and similarly competitive with
the more conventional orbital-based techniques used for
small systems. If these hopes were realized, the chemi-
cally relevant and intuitively pleasing dependence on the
frontier molecular orbitals would lead this author to
favor a Christoffel–Darboux-based algorithm over the
alternatives presently available.
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